§531.6 ## AVERAGE FUEL ECONOMY STANDARD | Model year | Miles per
gallon | |------------|---------------------| | 1978 | 11.5 | | 1979 | 11.5 | | 1980 | 16.2 | | 1981 | 17.9 | | 1982 | 17.9 | | 1983 | 16.6 | | 1984 | 16.6 | | 1985 | 16.6 | #### (6) Lotus Cars Ltd. | Model year | Average
fuel econ-
omy stand-
ard (miles
per gallon) | |------------|--| | 1994 | 24.2 | | 1995 | 23.3 | #### (7) Officine Alfieri Maserati, S.p.A. #### AVERAGE FUEL ECONOMY STANDARD | Model year | Miles per
gallon | |------------|---------------------| | 1978 | 12.5 | | 1979 | 12.5 | | 1980 | 9.5 | | 1984 | 17.9 | | 1985 | 16.8 | ## (8) Lamborghini of North America. ## AVERAGE FUEL ECONOMY STANDARD | Model year | Miles per
gallon | | |------------|---------------------|--| | 1983 | 13.7
13.7 | | ## (9) LondonCoach Co., Inc. ## AVERAGE FUEL ECONOMY STANDARD | Model year | Miles per
gallon | |------------|----------------------| | 1985 | 21.0
21.0
21.0 | ## (10) Automobili Lamborghini S.p.A./ Vector Aeromotive Corporation. | Model year | Average
fuel econ-
omy stand-
ard (miles
per gallon) | |------------|--| | 1995 | 12.8
12.6 | | 1997 | 12.5 | # (11) Dutcher Motors, Inc. #### 49 CFR Ch. V (10-1-14 Edition) | Model year | Average
fuel econ-
omy stand-
ard (miles
per gallon) | |------------|--| | 1986 | 16.0 | | 1987 | 16.0 | | 1988 | 16.0 | | 1992 | 17.0 | | 1993 | 17.0 | | 1994 | 17.0 | | 1995 | 17.0 | #### (12) MedNet, Inc. | Model year | Average
fuel econ-
omy stand-
ard (miles
per gallon) | |----------------------|--| | 1996
1997
1998 | 17.0
17.0
17.0 | ## (13) Vector Aeromotive Corporation. | Model year | Average
fuel econ-
omy stand-
ard (miles
per gallon) | |------------|--| | 1998 | 12.1 | # (14) Qvale Automotive Group Srl. | Model year | Average
fuel econ-
omy stand-
ard (miles
per gallon) | |------------|--| | 2000 | 22.0 | | 2001 | 22.0 | #### (15) Spyker Automobielen B.V. #### AVERAGE FUEL ECONOMY STANDARD | Model year | Miles per
gallon | |------------|---------------------| | 2006 | 18.9 | | 2007 | 18.9 | # [43 FR 28204, June 29, 1978] EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §531.5 see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov. # § 531.6 Measurement and calculation procedures. (a) The fleet average fuel economy performance of all passenger automobiles that are manufactured by a manufacturer in a model year shall be determined in accordance with procedures established by the Administrator of the Environmental Protection Agency under 49 U.S.C. 32904 and set forth in 40 CFR part 600. For model years 2017 to 2025, a manufacturer is eligible to increase the fuel economy performance of passenger cars in accordance with procedures established by EPA set forth in 40 CFR part 600, including any adjustments to fuel economy EPA allows, such as for fuel consumption improvements related to air conditioning efficiency and off-cycle technologies. (b) The eligibility of a manufacturer to increase its fuel economy performance through use of an off-cycle technology requires an application request made to EPA in accordance with 40 CFR Part 86.1869-12 and an approval granted by EPA made in consultation with NHTSA. In order to expedite NHTSA's consultation with EPA, a manufacturer's application as part of the off-cycle credit approval process under 40 CFR 86.1869-12(b) or 40 CFR 86.1869-12(c) shall also be submitted to NHTSA at the same time if the manufacturer is seeking off-cycle fuel economy improvement values under the CAFE program for those technologies. For off-cycle technologies which are covered under 40 CFR 86.1869–12(b) or 40 CFR 86.1869–12(c), NHTSA will consult with EPA regarding NHTSA's evaluation of the specific off-cycle technology to ensure its impact on fuel economy and the suitability of using the off-cycle technology to adjust the fuel economy performance. NHTSA will provide its views on the suitability of the technology for that purpose to EPA. NHTSA's evaluation and review will consider: - (1) Whether the technology has a direct impact upon improving fuel economy performance; - (2) Whether the technology is related to crash-avoidance technologies, safety critical systems or systems affecting safety-critical functions, or technologies designed for the purpose of reducing the frequency of vehicle crash- - (3) Information from any assessments conducted by EPA related to the application, the technology and/or related technologies; and - (4) Any other relevant factors. [77 FR 63191, Oct. 15, 2012] #### APPENDIX TO PART 531—EXAMPLE OF CALCULATING COMPLIANCE UNDER §531.5(c) Assume a hypothetical manufacturer (Manufacturer X) produces a fleet of domestic passenger automobiles in MY 2012 as follows: #### APPENDIX TABLE I | Model type | | | Actual measured | | | | |------------|--------------|------------------------|----------------------------|----------------------|----------------------------|--------| | Group | Carline name | Basic
engine
(L) | Trans-
mission
class | Description | fuel econ-
omy
(mpg) | Volume | | 1 | PC A FWD | 1.8 | A5 | 2-door sedan | 34.0 | 1,500 | | 2 | PC A FWD | 1.8 | M6 | 2-door sedan | 34.6 | 2,000 | | 3 | PC A FWD | 2.5 | A6 | 4-door wagon | 33.8 | 2,000 | | 4 | PC A AWD | 1.8 | A6 | 4-door wagon | 34.4 | 1,000 | | 5 | PC A AWD | 2.5 | M6 | 2-door
hatchback. | 32.9 | 3,000 | | 6 | PC B RWD | 2.5 | A6 | 4-door wagon | 32.2 | 8,000 | | 7 | PC B RWD | 2.5 | A7 | 4-door sedan | 33.1 | 2,000 | | 8 | PC C AWD | 3.2 | A7 | 4-door sedan | 30.6 | 5,000 | | 9 | PC C FWD | 3.2 | M6 | 2-door coupe | 28.5 | 3,000 | | Total | 27,500. | | | | | | Note to Appendix Table I: Manufacturer X's required fleet average fuel economy standard level would first be calculated by determining the fuel economy targets applicable to each unique model type and footprint combination for model type groups 1–9 as illustrated in Appendix Table II: Manufacturer X calculates a fuel economy target standard for each unique model type and footprint combination.